Abstract

We show that toric ideals of flow polytopes are generated in degree $3$. This was conjectured by Diaconis and Eriksson for the special case of the Birkhoff polytope. Our proof uses a hyperplane subdivision method developed by Haase and Paffenholz. It is known that reduced revlex Gröbner bases of the toric ideal of the Birkhoff polytope $B_n$ have at most degree $n$. We show that this bound is sharp for some revlex term orders. For $(m \times n)$-transportation polytopes, a similar result holds: they have Gröbner bases of at most degree $\lfloor mn/2 \rfloor$. We construct a family of examples, where this bound is sharp. Nous démontrons que les idéaux toriques des polytopes de flot sont engendrés par un ensemble de degré $3$. Cela a été conjecturé par Diaconis et Eriksson pour le cas particulier du polytope de Birkhoff. Notre preuve utilise une méthode de subdivision par hyperplans, développée par Haase et Paffenholz. Il est bien connu que les bases de Gröbner revlex réduite du polytope de Birkhoff $B_n$ sont au plus de degré $n$. Nous démontrons que cette borne est optimale pour quelques ordres revlex. Pour les polytopes de transportation de dimension $(m \times n)$, il existe un résultat similaire : leurs bases de Gröbner sont au plus de degré $\lfloor mn/2 \rfloor$. Nous construisons une famille d'exemples pour lesquels cette borne est atteinte.

Highlights

  • Let G = (V, A) be a directed graph and d ∈ ZV, l, u ∈ NA

  • A flow polytope is the set of all flows with fixed parameters G, d, u, l

  • Generating sets of toric ideals correspond to Markov bases that are used in statistics e. g. for sampling from the set of all contingency tables with given marginals ([2])

Read more

Summary

Introduction

Diaconis and Eriksson ([1]) conjectured that the toric ideal of the Birkhoff polytope Bn (the convex hull of all (n × n)-permutation matrices) is generated in degree 3 They proved this by massive computations for n ≤ 6. This hyperplane subdivision method was developed by Haase and Paffenholz in [4]. The proofs that are missing in this extended abstract are contained in the arXiv version ([6])

Background
The Hyperplane Subdivision Method
On the Proof of the Main Theorem
Grobner Bases for Transportation Polytopes
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call