Abstract

We consider $G_2$-manifolds with an effective torus action that is multi-Hamiltonian for one or more of the defining forms. The case of $T^3$-actions is found to be distinguished. For such actions multi-Hamiltonian with respect to both the three- and four-form, we derive a Gibbons-Hawking type ansatz giving the geometry on an open dense set in terms a symmetric $3\times 3$-matrix of functions. This leads to particularly simple examples of explicit metrics with holonomy equal to $G_2$. We prove that the multi-moment maps exhibit the full orbit space topologically as a smooth four-manifold containing a trivalent graph as the image of the set of special orbits and describe these graphs in some complete examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.