Abstract
Finding errors in machine learning applications requires a thorough exploration of their behavior over data. Existing approaches used by practitioners are often ad-hoc and lack the abstractions needed to scale this process. We present TorchQL, a programming framework to evaluate and improve the correctness of machine learning applications. TorchQL allows users to write queries to specify and check integrity constraints over machine learning models and datasets. It seamlessly integrates relational algebra with functional programming to allow for highly expressive queries using only eight intuitive operators. We evaluate TorchQL on diverse use-cases including finding critical temporal inconsistencies in objects detected across video frames in autonomous driving, finding data imputation errors in time-series medical records, finding data labeling errors in real-world images, and evaluating biases and constraining outputs of language models. Our experiments show that TorchQL enables up to 13x faster query executions than baselines like Pandas and MongoDB, and up to 40% shorter queries than native Python. We also conduct a user study and find that TorchQL is natural enough for developers familiar with Python to specify complex integrity constraints.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.