Abstract
P529, a Torc1/Torc2 inhibitor, has demonstrated its potential as a radiosensitizer. However the molecular mechanisms underlying this phenomenon still need to be elucidated. Aim of this study is to dissect molecular mechanisms regulating the radiosensitizing properties of P529 in a wide panel of prostate cancer models. Six tumor cell lines and xenograft models were used for in vitro and in vivo studies. Clonogenic survival, apoptotic, autophagic, and senescence assays were used to examine the effects of ionizing radiation (IR) alone and in combination with P529. CRM1, survivin, GSK-3β, and DNA-DSBs expression and modulation, upon P529 and RT, were monitored by western blot. In vivo treatment response upon P529, irradiation or combination of P529 with IR was monitored by tumor volume, time to progression (TTP), and immunohistochemical analysis. P529 treatment induced significantly more apoptosis and DNA double-strand break (DSB) when combined with radiotherapy resulting in cellular radiosensitization and growth delay of irradiated tumor xenografts. Upon P529 treatment Rad51, DNA-PKcs, and Ku70 protein expression was downregulated, indicating delayed DNA double-strand damage repair. The radiosensitizing properties of P529 were partially linked to GSK-3β, cyclin-D1, and c-myc modulation with associated inhibition of CRM1-mediated nuclear export of survivin. Importantly, autophagy and tumor senescence were involved in the enhanced P529 radioresponse. Impaired DNA double-strand damage repair, inhibition of CRM1-mediated nuclear export of survivin, modulation of cyclin-D1 and c-myc with associated pro-apoptotic and autophagic and senescent events explain the radiosensitizing properties of P529 in preclinical models of prostate cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.