Abstract

Homeostatic mechanisms operate to stabilize synaptic function; however, we know little about how they are regulated. Exploiting Drosophila genetics, we have uncovered a critical role for the target of rapamycin (TOR) in the regulation of synaptic homeostasis at the Drosophila larval neuromuscular junction. Loss of postsynaptic TOR disrupts a retrograde compensatory enhancement in neurotransmitter release that is normally triggered by a reduction in postsynaptic glutamate receptor activity. Moreover, postsynaptic overexpression of TOR or a phosphomimetic form of S6 ribosomal protein kinase, a common target of TOR, can trigger a strong retrograde increase in neurotransmitter release. Interestingly, heterozygosity for eIF4E, a critical component of the cap-binding protein complex, blocks the retrograde signal in all these cases. Our findings suggest that cap-dependent translation under the control of TOR plays a critical role in establishing the activity dependent homeostatic response at the NMJ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call