Abstract

The value of protein models obtained with automated protein structure prediction depends primarily on their accuracy. Protein model quality assessment is thus critical to select the model that can best answer biologically relevant questions from an ensemble of predictions. However, despite many advances in the field, different methods capture different types of errors, begging the question of which method to use. We introduce TopScore, a meta Model Quality Assessment Program (meta-MQAP) that uses deep neural networks to combine scores from 15 different primary predictors to predict accurate residue-wise and whole-protein error estimates. The predictions on six large independent data sets are highly correlated to superposition-independent errors in the model, achieving a Pearson's Rall2 of 0.93 and 0.78 for whole-protein and residue-wise error predictions, respectively. This is a significant improvement over any of the investigated primary MQAPs, demonstrating that much can be gained by optimally combining different methods and using different and very large data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.