Abstract

The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.

Highlights

  • The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been greatly emphasised in neurodegenerative diseases [1,2,3]

  • Each observed colony was patched on more stringent media, which led to a successful isolation of 21 positive clones (PPIs indicated by expression of four reporter genes: Aur1-C and Mel1 as well as auxotrophic His3 and Ade2)

  • Both species co-precipitated with TOPORS from hTERT-RPE1 cells, whereas only the smaller species was detected in protein complexes precipitated with TOPORS from the 661W cells

Read more

Summary

Introduction

The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been greatly emphasised in neurodegenerative diseases [1,2,3]. Its importance has been established in context of retinal dystrophies, highlighting the insufficient capacity of the 26 S proteasomes to degrade excess misfolded proteins as a major factor in the aetiology of photoreceptor degeneration [4,5,6]. TOPORS (MIM 609507), a topoisomerase I-binding, arginine/. TOPORS Interacts with Regulatory Subunit 4 of the 26 S Proteasome. 228064): www.moorfields.nhs.uk (Personal award to SSB for infrastructures); 4. MOORFIELDS EYE CHARITY (Moorfields Eye Hospital NHS Foundation Trust; charity number 1140679): www.moorfields.nhs. Uk (Personal award to SSB for infrastructures); and 5. Nihr.ac.uk (Personal award to SSB for infrastructures)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.