Abstract

We review our work done for topology optimization of passive photonic crystal component parts for broadband and wavelength dependent operations. We show examples of low-loss topology-optimized bends and splitters optimized for broadband transmission and demonstrate the applicability of topology optimization for designing slow-light and/or wavelength selective component parts. We also present how the dispersion of light in the slow-light regime of photonic crystal waveguides can be tailored to obtain filter functionalities in passive devices and/or to obtain semi -slow light having a group velocity in the range ~(c 0 /15 - c 0 /100); vanishing, positive, or negative group velocity dispersion (GVD); and low-loss propagation in a practical ~5-15 nm bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.