Abstract
Driven by the requirements of the bionic joint or tracking equipment for the spherical parallel manipulators (SPMs) with three rotational degrees-of-freedom (DoFs), this paper carries out the topology synthesis of a class of three-legged SPMs employing Lie group theory. In order to achieve the intersection of the displacement subgroups, the subgroup characteristics and operation principles are defined in this paper. Mainly drawing on the Lie group theory, the topology synthesis procedure of three-legged SPMs including four stages and two functional blocks is proposed, in which the assembly principles of three legs are defined. By introducing the circular track, a novel class of three-legged SPMs is synthesized, which is the important complement to the existing SPMs. Finally, four typical examples are given to demonstrate the finite displacements of the synthesized three-legged SPMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.