Abstract

The random walker image registration (RWIR) method is a powerful tool for aligning medical images that also provides useful uncertainty information. However, it is difficult to ensure topology preservation in RWIR, which is an important property in medical image registration as it is often necessary for the anatomical feasibility of an alignment. In this paper, we introduce a technique for determining spatially adaptive regularization weights for RWIR that ensure an anatomically feasible transformation. This technique only increases the run time of the RWIR algorithm by about 10%, and avoids over-smoothing by only increasing regularization in specific image regions. Our results show that our technique ensures topology preservation and improves registration accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.