Abstract
Engineering structures usually operate in some specific frequency bands. An effective way to avoid resonance is to shift the structure’s natural frequencies out of these frequency bands. However, in the optimization procedure, which frequency orders will fall into these bands are not known a priori. This makes it difficult to use the existing frequency constraint formulations, which require prescribed orders. For solving this issue, a novel formulation of the frequency band constraint based on a modified Heaviside function is proposed in this paper. The new formulation is continuous and differentiable; thus, the sensitivity of the constraint function can be derived and used in a gradient-based optimization method. Topology optimization for maximizing the structural fundamental frequency while circumventing the natural frequencies located in the working frequency bands is studied. For eliminating the frequently happened numerical problems in the natural frequency topology optimization process, including mode switching, checkerboard phenomena, and gray elements, the “bound formulation” and “robust formulation” are applied. Three numerical examples, including 2D and 3D problems, are solved by the proposed method. Frequency band gaps of the optimized results are obtained by considering the frequency band constraints, which validates the effectiveness of the developed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.