Abstract

A topology optimization, based on a coupling method of finite element and meshless method, is proposed for continuum structure. A reasonable arrangement of the meshless domain can guarantee the accuracy of the meshless methods and meanwhile keep the computational efficiency of the finite element method. Besides, as the coupling method is adopted, the displacement boundary conditions are applied to finite elements nodes by standard finite element method. A dual-level density approximant is carried out to approximate and interpolate a unified and continuous density field. An unstable nodes phenomenon is observed in the interface domain, leading to nonconvergence of the equilibrium iterations. A smooth blending function and an energy convergence criterion are used to circumvent the convergent difficulty. Three benchmark problems of topology optimization are given to demonstrate the effectiveness of the proposed approach. Neither “islanding” phenomenon nor other common numerical instabilities of the SIMP method occur in this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.