Abstract

AbstractThis article presents an approach for the topology optimization of frame structures composed of nonlinear Timoshenko beam finite elements (FEs) under time‐varying excitation. Material nonlinearity is considered with a nonlinear Timoshenko beam FE model that accounts for distributed plasticity and axial–shear–moment interactions through appropriate hysteretic interpolation functions and a yield/capacity function, respectively. Hysteretic variables for curvature, shear, and axial deformations represent the nonlinearities and evolve according to first‐order nonlinear ordinary differential equations (ODEs). Owing to the first‐order representation, the governing dynamic equilibrium equations, and hysteretic evolution equations can thus be concisely presented as a combined system of first‐order nonlinear ODEs that can be solved using a general ODE solver. This avoids divergence due to an ill‐conditioned stiffness matrix that can commonly occur with Newmark–Newton solution schemes that rely upon linearization. The approach is illustrated for a volume minimization design problem, subject to dynamic excitation where an approximation for the maximum displacement at specified nodes is constrained to a given limit, that is, a drift ratio. The maximum displacement is approximated using the p‐norm, thus facilitating the derivation of the analytical sensitivities for gradient‐based optimization. The proposed approach is demonstrated through several numerical examples for the design of structural frames subjected to sinusoidal base excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.