Abstract

This paper presents a density-based topology optimization approach to design self-supporting and lightweight infill structures with efficient mechanical properties for enclosed structural shells. A new overhang constraint is developed based on the additive manufacturing (AM) filter to ensure that the infills are not only self-supporting in a specified manufacturing direction but can also provide necessary supports to the external shell for successful manufacturing. Two-field–based parametrization and topology optimization formulations are used to impose minimum length scales and to avoid the impractical design solutions that exhibit one-node connection structural members. Besides, a localized volume constraint is utilized to achieve a porous infill pattern. By solving the optimization problem, a shell-infill design can be obtained with very few overhang elements that can be easily post-processed without affecting the mechanical properties of the overall structure. As a result, the optimized design contains no overhang elements and exhibits a better mechanical property than that with predefined periodic infill patterns of the same weight. Numerical examples are given to demonstrate the effectiveness and applicability of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call