Abstract

Torque ripple is a major problem for switched reluctance motors, which may cause undesirable vibration and acoustic noise, especially at low speed. This paper presents an optimal topology structure of rotor for 8/6 pole switched reluctance motor by using the level set method. The nonlinear ferromagnetic material boundary of rotor pole is implicitly represented through an embedded level set function. This method is applied to obtaining the optimal distributions of material in the design domain for minimizing torque ripple and maximizing average torque. In the optimization objective function, the reluctivity of ferromagnetic material is selected as the design variable. The normal velocity is derived from sensitivity analysis, where the adjoint variable method is utilized. Two-dimensional finite element method is employed to calculate the electromagnetic parameters of this electric machine. Analysis results obtained from the transient simulation of electromagnetic field coupled with control circuit show that the torque ripple is reduced effectively by using the optimized rotor structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call