Abstract

Large district heating networks greatly benefit from topological changes brought by the construction of loops. The overall effects of malfunctions are smoothed, making existing networks intrinsically robust. In this paper, we demonstrate the use of topology optimization to find the network layout that maximizes robustness under an investment constraint. The optimized design stems from a large ground structure that includes all the possible looping elements. The objective is an original robustness measure, that neither requires any probabilistic analysis of the input uncertainty nor the identification of bounds on stochastic variables. Our case study on the Turin district heating network confirms that robustness and cost are antagonist objectives: the optimized designs obtained by systematically relaxing the investment constraint lay on a smooth Pareto front. A sudden steepness variation divides the front in two different regions. For small investments topological modifications are observed, i.e., new branches appear continuously in the optimized layout as the investment increases. Here, large robustness improvements are possible. However, at high investments no topological modifications are visible and only limited robustness gains are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.