Abstract

In recent years, the new technologies and discoveries on manufacturing materials have encouraged researchers to investigate the appearance of material properties that are not naturally available. Materials featuring a specific stiffness, or structures that combine non-structural and structural functions are applied in the aerospace, electronics and medical industry fields. Particularly, structures designed for dynamic actuation with reduced vibration response are the focus of this work. The bi-material and multifunctional concepts are considered for the design of a controlled piezoelectric actuator with vibration suppression by means of the topology optimization method (TOM). The bi-material piezoelectric actuator (BPEA) has its metallic host layer designed by the TOM, which defines the structural function, and the electric function is given by two piezo-ceramic layers that act as a sensor and an actuator coupled with a constant gain active velocity feedback control (AVFC). The AVFC, provided by the piezoelectric layers, affects the structural damping of the system through the velocity state variables readings in time domain. The dynamic equation analyzed throughout the optimization procedure is fully elaborated and implemented. The dynamic response for the rectangular four-noded finite element analysis is obtained by the Newmark’s time-integration method, which is applied to the physical and the adjoint systems, given that the adjoint formulation is needed for the sensitivity analysis. A gradient-based optimization method is applied to minimize the displacement energy output measured at a predefined degree-of-freedom of the BPEA when a transient mechanical load is applied. Results are obtained for different control gain values to evaluate their influence on the final topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.