Abstract
In order to overcome the problems of complicated calculation process and lower computational efficiency of the traditional level set method (LSM), for nonlinear structure topology optimization, a parameterized level set method (PLSM) was introduced. Through interpolation of the initial level set function with the globally supported radial basis function (GSRBF), a nonlinear material structure topology optimization model was established with the interpolation coefficient as the design variable, the minimum strain energy of the structure as the objective function, and the material amount as the constraint condition. The equilibrium equation for the nonlinear material structure was established by finite element analysis, and solved with the iterative method. In addition, the substructure method (i.e. the domain decomposition method) was used to divide the design area into several sub-areas, and the solution to the full degree of freedom equilibrium equation was decomposed into a set of solutions of reduced equilibrium equations and solutions of multiple substructures’ internal displacements, which could reduce the computation cost. Examples show that, this method can ensure the numerical stability, improve the computational efficiency, and obtain the topology optimization configuration with clear boundaries and reasonable structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.