Abstract

A linear elastic response is assumed in most structural topology optimization problems. While this assumption is valid for a wide variety of problems, it is not valid for structures undergoing large displacements. The elastic structural analysis used here accommodates geometric and material non-linearities. The material density field is filtered to enforce a length scale on the field variation and is penalized to remove less effective intermediate densities. The filtering scheme is embedded in the structural analysis to resolve the non-existent solution to the solid-void topology problem. In this way, we know precisely what optimization problem is being solved. The structural topology optimization formulation is also used to design compliant mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.