Abstract

A linear elastic response is assumed in most structural topology optimization problems. While this assumption is valid for a wide variety of problems, it is not valid for structures undergoing large displacements. The elastic structural analysis used here accommodates geometric and material non-linearities. The material density field is filtered to enforce a length scale on the field variation and is penalized to remove less effective intermediate densities. The filtering scheme is embedded in the structural analysis to resolve the non-existent solution to the solid-void topology problem. In this way, we know precisely what optimization problem is being solved. The structural topology optimization formulation is also used to design compliant mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call