Abstract

This paper introduces a topology optimization algorithm for the optimal design of cellular materials and composites with periodic microstructures so that the resulting macrostructure has the maximum stiffness (or minimum mean compliance). The effective properties of the heterogeneous material are obtained through the homogenization theory, and these properties are integrated into the analysis of the macrostructure. The sensitivity analysis for the material unit cell is established for such a two-scale optimization problem. Then, a bi-directional evolutionary structural optimization (BESO) approach is developed to achieve a clear and optimized topology for the material microstructure. Several numerical examples are presented to validate the proposed optimization algorithm and a variety of anisotropic microstructures of cellular materials and composites are obtained. The various effects on the topological design of the material microstructure are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.