Abstract
A topology-optimization-based design method for a flow-reversing chamber muffler is suggested to maximize the transmission loss value at a target frequency considering flow power dissipation. Rigid partitions for high noise reduction should be carefully placed inside the muffler to avoid extreme flow power dissipation due to a 180° change in flow direction from an inlet to an outlet. The optimal flow path for minimum flow power dissipation is well known to change depending on the Reynolds number, which is a function of the inlet flow velocity. To optimize the partition layout with an optimal flow path in an expansion chamber at a given Reynolds number, a flow-reversing chamber muffler design problem is formulated by topology optimization. The formulated topology optimization problem is implemented using the finite element method with a gradient-based optimization algorithm and is solved for various design conditions such as the target frequencies, rigid partition volumes, Reynolds numbers, non-design domain settings, and allowed amounts of flow power dissipation. The effectiveness of our suggested approach is verified by comparing the optimized partition layouts obtained by the suggested method and previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.