Abstract
A method for structural topology optimization of frame structures with flexible joints is presented. A typical frame structure is a set of beams and joints assembled to carry an applied load. The problem considered in this paper is to find the stiffest frame for a given mass. By introducing design variables for beams and joints, a mass distribution for optimal structural stiffness can be found. Each beam can have several design variables connected to its cross section. One of these is an area-type design variable which is used to represent the global size of the beam. The other design variables are of length ratio type, controlling the cross section of the beam. Joints are flexible elements connecting the beams in the structure. Each joint has stiffness properties and a mass. A framework for modelling these stiffnesses is presented and design variables for joints are introduced. We prove a theorem which can be interpreted as the fact that the removal of structural elements, e.g. joints or beams, can be modelled by a small strictly positive material amount assigned to the element. This is needed for the computations of sensitivities used in the applied gradient based iterative method. Both two and three dimensional problems, as well as multiple load cases and multiple mass constraints, are treated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.