Abstract

This paper proposes a methodology for maximizing dynamic stress response reliability of continuum structures involving multi-phase materials by using a bi-directional evolutionary structural optimization (BESO) method. The topology optimization model is built based on a material interpolation scheme with multiple materials. The objective function is to maximize the dynamic stress response reliability index subject to volume constraints on multi-phase materials. To solve the defined topology optimization problems, the sensitivity of the dynamic stress response reliability index with respect to the design variables is derived for iteratively updating the structural topology. Subsequently, an optimization procedure based on the BESO method is developed. Finally, a series of numerical examples of both 2D and 3D structures are presented to demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.