Abstract
This paper develops a bi-directional evolutionary structural optimization (BESO) method for topological design of compliant mechanisms. The design problem is reformulated as maximizing the flexibility of the compliant mechanism subject to the mean compliance and volume constraints. Based on the finite element analysis, a new BESO algorithm is established for solving such an optimization problem by gradually updating design variables until a convergent solution is obtained. Several 2D and 3D examples are presented to demonstrate the effectiveness of the proposed BESO method. A series of optimized mechanism designs with or without hinge regions are obtained. Numerical results also indicate that the flexibility and hinge-related property of the optimized compliant mechanisms can be controlled by the desired structural stiffness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.