Abstract

Hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells no matter they are in the horizontal, vertical or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary and every analysis cell is either solid or void to prevent grey cell problem that is usually caused by intermediate material states. Von Mises stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions require no postprocessing or interpretation, and have no point flexure, unsmooth boundary and zigzag member. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples in compliant mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call