Abstract

Application of continuum structural topology optimization methods to the layout design of bracing systems for multistory steel frame buildings under earthquake loads is explored in this work. A weighted average strain energy sensitivity of element is formulated to be served as the element removal criterion in the optimization process, and then an ESO-based continuum structural topology optimization method for the layout design of multistory steel frame bracing systems subjected to earthquake-induced ground motions is presented. In each iterative design, an approximate reanalysis technique named CA method is adopted to reduce the computational effort. Finally, a design example is given to demonstrate the effectiveness of the presented optimization method for the optimal layout design of steel frame bracing systems under earthquake loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call