Abstract

Topology optimization of the inner reinforcement for a vehicle’s hood has been performed by evolutionary structural optimization (ESO) method. The purpose of this study is to obtain optimal topology of the inner reinforcement for a vehicle’s hood considering static stiffness and natural frequency simultaneously. To do this, the multiobjective design optimization technique was implemented. From several combinations of weighting factors, a Pareto-optimal solution was obtained. Optimal topologies were obtained by the ESO method, i.e., by eliminating the elements having the lowest efficiency from the structural domain. As the weighting factor of the elastic strain efficiency goes from 1 to zero, it is found that the optimal topologies transmits from the optimal topology of static stiffness problem to that of natural frequency problem. Therefore, it was concluded that ESO method is effectively applied to topology optimization of the inner reinforcement of a vehicle’s hood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.