Abstract

In this work, an efficient topology optimization approach is proposed for a three-dimensional (3D) flexible multibody system (FMBS) undergoing both large overall motion and large deformation. The FMBS of concern is accurately modeled first via the solid element of the absolute nodal coordinate formulation (ANCF), which utilizes both nodal positions and nodal slopes as the generalized coordinates. Furthermore, the analytical formulae of the elastic force vector and the corresponding Jacobian are derived for efficient computation. To deal with the dynamics in the optimization process, the equivalent static load (ESL) method is employed to transform the topology optimization problem of dynamic response into a static one. Besides, the newly developed topology optimization method by moving morphable components (MMC) is used and reevaluated to optimize the 3D FMBS. In the MMC-based framework, a set of morphable structural components serves as the building blocks of optimization and hence greatly reduces the number of design variables. Therefore, the topology optimization approach has a potential to efficiently optimize an FMBS of large scale, especially in 3D cases. Two numerical examples are presented to validate the accuracy of the solid element of ANCF and the efficiency of the proposed optimization methodology, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.