Abstract

Vibrational piezoelectric energy harvesters are devices which convert ambient vibrational energy into electric energy. Here we focus on the common cantilever type in which an elastic beam is sandwiched between two piezoelectric plates. In order to maximize the electric power for a given sinusoidal vibrational excitation, we perform topology optimization of the elastic beam and tip mass by means of the SIMP approach, leaving the piezoelectric plates solid. We are interested in the first and especially second resonance mode. Homogenizing the piezoelectric strain distribution is a common indirect approach increasing the electric performance. The large design space of the topology optimization approach and the linear physical model also allows the maximization of electric performance by maximizing peak bending, resulting in practically infeasible designs. To avoid such problems, we formulate dynamic piezoelectric stress constraints. The obtained result is based on a mechanism which differs significantly from the common designs reported in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.