Abstract

A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.