Abstract
This paper proposes a topology optimization formulation for the three-dimensional (3-D) design of segmented permanent magnet (PM) arrays. Specifically, the proposed formulation aims to find an optimal 3-D structural topology of PM segments and their discrete magnetization directions. To achieve this, a design variable is defined in the vector form of a Cartesian coordinate system. The magnitude of the design variable vector determines a PM density, and the directional cosines of the vector determine PM magnetization directions. To acquire a segmented PM design with discrete magnetization directions, a PM strength penalization scheme is proposed. In this scheme, a PM strength is controlled using a minimum distance function between a magnetization direction and target discrete directions. Here, the minimum distance function is approximated using the p-norm for sensitivity calculation. To validate the effectiveness of the proposed formulation, three design examples are provided. In the first example, a two-dimensional (2-D) dipole Halbach cylinder is designed to confirm that the proposed formulation can be applied for a 2-D design problem. The second example aims to design 3-D dipole PM arrays with a cuboid cavity. In the third example, a 3-D PM arrays are designed for maximizing the magnetic force acting on a soft ferromagnetic material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.