Abstract

Stability and buckling have attracted extensive attention in the design of structural elements, especially in the design of thin-walled structures since they may naturally have poor stability and be prone to buckling failure. This paper proposes a level-set based topology optimization (TO) method that can maximize the lowest linear buckling load under a mean compliance constraint. First, we conduct the linearized buckling analysis and formulate the optimum design problem. Second, we derive the design sensitivity and revisit the reaction-diffusion equation-based level-set topology optimization. Finally, we solve several two-dimensional benchmark problems and the design results are presented to validate the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call