Abstract

Although topology optimization is well established in most engineering fields, it is still in its infancy concerning highly non-linear structural applications like vehicular crashworthiness. One of the approaches recently proposed and based on Hybrid Cellular Automata is modified here such that it can be applied for the first time to thin-walled structures. Classical methods based on voxel techniques, i.e., on solid three-dimensional volume elements, cannot derive structures made from thin metal sheets where the main energy absorption mode is related to plastic buckling, folding and failure. Because the main components of car structures are made from such thin-walled beams and panels, a special approach using SFE CONCEPT was developed, which is presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.