Abstract

In this paper, an effective and efficient topology optimization method, termed as Isogeometric Topology Optimization (ITO), is proposed for systematic design of both 2D and 3D auxetic metamaterials based on isogeometric analysis (IGA). Firstly, a density distribution function (DDF) with the desired smoothness and continuity, to represent the topological changes of structures, is constructed using the Shepard function and non-uniform rational B-splines (NURBS) basis functions. Secondly, an energy-based homogenization method (EBHM) to evaluate material effective properties is numerically implemented by IGA, with the imposing of the periodic boundary formulation on material microstructure. Thirdly, a topology optimization formulation for 2D and 3D auxetic metamaterials is developed based on the DDF, where the objective function is defined as a combination of the homogenized elastic tensor and the IGA is applied to solve the structural responses. A relaxed optimality criteria (OC) method is used to update the design variables, due to the non-monotonic property of the problem. Finally, several numerical examples are used to demonstrate the effectiveness and efficiency of the proposed method. A series of auxetic microstructures with different deformation mechanisms (e.g. the re-entrant and chiral) can be obtained. The auxetic behavior of material microstructures are numerically validated using ANSYS, and the optimized designs are prototyped using the Selective Laser Sintering (SLS) technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.