Abstract

Topology optimization can devise structures with superior performance, while the results produced by topology optimization are often very complex and difficult to be manufactured directly. The additive manufacturing is a free-form manufacturing technique in which the component is built in a layer-by-layer manner. The integration of topology optimization and additive manufacturing technologies has the potential to bring significant synergy benefits. However, typical topology optimization algorithms have not considered the unique manufacturing limitations of additive manufacturing. This article focuses on the topology optimization for additive manufacturing considering self-supporting constraint based on the Solid Isotropic Material with Penalization (SIMP) framework. An explicit self-supporting constraint model is constructed, and the proposed method realizes self-supported by gradual evolution of supporting structures. The corresponding sensitivity analysis is investigated, which requires less computational cost and can be solved in parallel. Besides, a directional sensitivity filter is specifically proposed to promote the evolution of supporting structures. The performance and functionality of the proposed method is illustrated with three compliance minimization problems. All cases achieve self-supported successfully, and the solutions own good manufacturability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call