Abstract

For wireless sensor networks, with energy constrained, topology optimization can reduce energy consumption and improve the structure of communication link. Based on the minimum rigid graph, a new topology optimization algorithm is presented in this paper, by considering the weights of communication links in graph and the generated algebraic properties of rigid graph. The proposed algorithm not only ensures the communication link is shorter which can prolong the network life cycle, but also keeps the graph structure more stable, which means that the network has good robustness. It is shown that communication link obtained by the proposed algorithm is shorter than that obtained by the related existing algorithms. As a result, the proposed algorithm has good network connectivity and structure stability. At the same time the trace of the generated rigid matrix is very big so that the proposed algorithm has excellent algebraic rigidity properties of a network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.