Abstract
The computational cost of topology optimization based on the stochastic algorithm is shown to be greatly reduced by deep learning. In the learning phase, the cross-sectional image of an interior permanent magnet motor, represented in RGB, is used to train a convolutional neural network (CNN) to infer the torque properties. In the optimization phase, all the individuals are approximately evaluated by the trained CNN, while finite element analysis for accurate evaluation is performed only for a limited number of individuals. It is numerically shown that the computational cost for the topology optimization can be reduced without the loss of optimization quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.