Abstract

Most of the two-dimensional materials possessing low bending stiffness tend to lose the flat shape to form topological defects in the form of wrinkles and folds under the action of external factors. One of the striking examples of such material is graphene, where the presence of wrinkles leads to changes in physical, mechanical, and chemical properties of the material. Thus, changing the geometry of wrinkles, one can purposefully control properties of graphene. In this paper, we studied the characteristics of wrinkles appearing in graphene under the influence of elastic deformation, as well as the evolution of the configuration of wrinkles in the vicinity of the constrained edge of the graphene nanoribbon at different initial conditions. It is found that near the constrained edges of the deformed graphene nanoribbons, it is profitable to form wrinklons, that is, transition regions, where two or more wrinkles merge into one. The stability of two types of wrinklons formed by merging of the two or three wrinkles in one is shown. It is shown that in the process of the structure relaxation of the uniformly deformed graphene depending on the initial configuration of wrinkles, hierarchy of wrinkles containing wrinklons of one or another type is formed near the constrained edges. The results allow to explain the experimentally observed topology of the graphene sheet in the vicinity of the constrained edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call