Abstract
Using the trace anomaly relation, low-energy theorem and Witten-Veneziano formula, we have developed an analytical formalism which allows one to calculate the gluon condensate, the topological susceptibility and the mass of the η′ meson in the chiral limit as functions of the non-perturbative vacuum energy density. It is used for numerical evaluation of the chiral QCD topology within the QCD vacuum model consisting mainly of the quantum component given by the recently proposed zero modes enhancement (ZME) model and the classical component given by the random instanton liquid model (RILM). We sum up both contributions into the total, non-perturbative vacuum energy density. A very good agreement with the phenomenological values of the topological susceptibility, the mass of the η′ meson in the chiral limit and the gluon condensate has been obtained. This puts the above mentioned QCD vacuum model on a firm phenomenological ground.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.