Abstract

The multipartite non-Hermitian Su-Schrieffer-Heeger model is explored as a prototypical example of one-dimensional systems with several sublattice sites for unveiling intriguing insulating and metallic phases with no Hermitian counterparts. These phases are characterized by composite cyclic loops of multiple complex-energy bands encircling single or multiple exceptional points (EPs) on the parametric space of real and imaginary energy. We show the topology of these composite loops is similar to well-known topological objects like M\"obius strips and Penrose triangles, and can be quantified by a nonadiabatic cyclic geometric phase which includes contributions only from the participating bands. We analytically derive a complete phase diagram with the phase boundaries of the model. We further examine the connection between encircling of multiple EPs by complex-energy bands on parametric space and associated topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.