Abstract
We establish a compact analogue of the P=W conjecture. For a projective irreducible holomorphic symplectic variety with a Lagrangian fibration, we show that the perverse numbers associated with the fibration match perfectly with the Hodge numbers of the total space. This builds a new connection between the topology of Lagrangian fibrations and the Hodge theory of hyper-Kähler manifolds. We present two applications of our result: one on the cohomology of the base and fibers of a Lagrangian fibration, and the other on the refined Gopakumar–Vafa invariants of a K3 surface. Furthermore, we show that the perverse filtration associated with a Lagrangian fibration is multiplicative under cup product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.