Abstract

In this paper we first construct a Lie group structure on n×n Hankel matrices over R+ by Hadamard product and then we find its Lie algebra structure and finally calculate dimension of this manifold over R+. Moreover, we discuss topological properties of this manifold using Frobenious norm. We pointed out the relation between Lie group and Lie algebra structures of these matrices by exponential map. It is also shown that the Hadamard product on Hankel matrices over R+ is not bounded by Frobenious norm. Lastly, we provide some applications of these manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.