Abstract
We study and develop a very new object introduced by V.I. Arnold: a monad is a triple consisting of a finite set, a map from that finite set to itself and the monad graph which is the directed graph whose vertices are the elements of the finite set and whose arrows lead each vertex to its image (by the map). We consider the case in which the finite set entering in the monad definition is a finite group G and the map f : G → G is the Frobenius map f k : x ↦ x k , for some k ∈ Z . We study the Frobenius dynamical system defined by the iteration of the monad f k , and also study the combinatorics and topology (i.e., the discrete invariants) of the monad graph. Our study provides useful information about several structures on the group associated to the monad graph. So, for example, several properties of the quadratic residues of finite commutative groups can be obtained in terms of the graph of the Frobenius monad f 2 : x ↦ x 2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.