Abstract

Thin film of superfluid $^3$He on a corrugated graphene substrate represents topological matter with a smooth disorder. It is possible that the atomically smooth disorder produced by the corrugated graphene does not destroy the superfluidity even in a very thin film, where the system can be considered as quasi two-dimensional topological material. This will allow us to study the effect of disorder on different classes of the $2+1$ topological materials: the chiral $^3$He-A with intrinsic quantum Hall effect and the time reversal invariant planar phase with intrinsic spin quantum Hall effect. In the limit of smooth disorder, the system can be considered as a Chern mosaic -- a collection of domains with different values of Chern numbers. In this limit, the quantization of the Hall conductance is determined by the percolated domain, while the density of the fermionic states is determined by the edge modes on the boundaries of the finite domains. This system can be useful for the general consideration of disorder in the topological matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.