Abstract
We consider the extent to which symmetry eigenvalues reveal the topological character of bands. Specifically, we compare distinct atomic limit phases (band representations) that share the same irreducible representations (irreps) at all points in the Brillouin zone and, therefore, appear equivalent in a classification based on eigenvalues. We derive examples where such "irrep-equivalent" phases can be distinguished by a quantized Berry phase or generalization thereof. These examples constitute a generalization of the Su-Schrieffer-Heeger chain: neither phase is topological, in the sense that localized Wannier functions exist, yet there is a topological obstruction between them. We refer to two phases as "Berry obstructed atomic limits" if they have the same irreps, but differ by Berry phases. This is a distinct notion from eigenvalue obstructed atomic limits, which differ in their symmetry irreps at some point in the Brillouin zone. We compute exhaustive lists of elementary band representations that are irrep-equivalent, in all space groups, with and without time-reversal symmetry and spin-orbit coupling, and use group theory to derive a set of necessary conditions for irrep-equivalence. Finally, we conjecture, and in some cases prove, that irrep-equivalent elementary band representations that are not equivalent can be distinguished by a topological invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.