Abstract
This article addresses the problem of reconstructing the topology of a network of agents interacting via linear dynamics, while being excited by exogenous stochastic sources that are possibly correlated across the agents, from time-series measurements alone. It is shown, under the assumption that the correlations are affine in nature, such network of nodal interactions is equivalent to a network with added agents. The added agents are represented by nodes that are latent, where no corresponding time-series measurements are available; however, here all the exogenous excitements are spatially (that is, across agents) uncorrelated. Generalizing affine correlations, it is shown that, under polynomial correlations, the latent nodes in the expanded networks can be excited by clusters of noise sources, where the clusters are uncorrelated with each other. The clusters can be replaced with a single noise source if the latent nodes are allowed to have non-linear interactions. Finally, using the sparse plus low-rank matrix decomposition of the imaginary part of the inverse power spectral density matrix (IPSDM) of the time-series data, the topology of the network is reconstructed. Under non conservative assumptions, the correlation graph of the noise sources is retrieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.