Abstract
Recently, some researchers investigated the topology identification for complex networks via LaSalle's invariance principle. The principle cannot be directly applied to time-varying systems since the positive limit sets are generally not invariant. In this paper, we study the topology identification problem for a class of weighted complex networks with time-varying node systems. Adaptive identification laws are proposed to estimate the coupling parameters of the networks with and without communication delays. We prove that the asymptotic identification is ensured by a persistently exciting condition. Numerical simulations are given to demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.