Abstract

We measure the topology (genus curve) of the galaxy distribution in a mock redshift catalog designed to resemble the upcoming Sloan Digital Sky Survey (SDSS). The catalog, drawn from a large N-body simulation of a Lambda-CDM cos- mological model, mimics the anticipated spectroscopic selection procedures of the SDSS in some detail. Sky maps, redshift slices, and 3-D contour maps of the mock survey reveal a rich and complex structure, including networks of voids and superclusters that resemble the patterns seen in the CfA redshift survey and the Las Campanas Redshift Survey (LCRS). The 3-D genus curve can be measured from the simulated catalog with superb precision; this curve has the general shape predicted for Gaussian, random phase initial conditions, but the error bars are small enough to demonstrate with high significance the subtle departures from this shape caused by non-linear gravitational evolution. These distortions have the form predicted by Matsubara's (1994) perturbative anal- ysis, but they are much smaller in amplitude. We also measure the 3-D genus curve of the radial peculiar velocity field measured by applying distance- indicator relations (with realistic errors) to the mock catalog. This genus curve is consistent with the Gaussian random phase prediction, though it is of relatively low precision because of the large smoothing length required to overcome noise in the measured velocity field. Finally, we measure the 2-D topology in redshift slices, similar to early slices from the SDSS and to slices already observed in the LCRS. The genus curves of these slices are consistent with the observed genus curves of the LCRS, providing further evidence in favor of the inflationary CDM model with Omega_M~0.4. The catalog is publicly available at http://www.astronomy.ohio-state.edu/~dhw/sdss.html.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.