Abstract

Herein, the combined application of characterization tools, such as Raman spectroscopy, thermal gravimetric analysis coupled with mass spectrometry, and optical and atomic force microscopy, confirms the reductive silylation of synthetic carbon allotropes as a new covalent functionalization strategy for the formation of heteroatom-carbon bonds. In particular, our study gives interesting insights into the topology-driven retrofunctionalization of nanotubide and graphenide derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.